Asymptotic expansion for a linear first-order ordinary difference equation (OΔE) with an irregular singular point at infinity:
In[475]:=
s=AsymptoticRSolveValue[y[n+1]3ny[n],y[n],{n,∞,4}]
Out[475]=
n
3
571
2488320
4
n
139
51840
3
n
1
288
2
n
1
12n
-+n
1
2
n
1
Plot the solution using a logarithmic scale:
In[478]:=
DiscretePlotCallouts/.{1},,{n,2^Range[1,9]},ScalingFunctions{"Log","Log"},
1
Out[478]=
Plot the solution of an asymptotic expansion for a linear third-order OΔE with an irregular singular point:
In[479]:=
s=AsymptoticRSolveValue[y[n+3]-y[n]-(n+2)y[n+1]0,y[n],{n,∞,1}]
Out[479]=
n
(-)
13
12n
--n
3
2
n
1
-n/2
5
12n
1
n
n/2
n
2
n
(-1)
-n/2
5
12n
1
n
n/2
n
3
In[483]:=
DiscretePlotCalloutN[s/.{1,1,1},5],,{n,2^Range[9]},ScalingFunctions{"Log","Log"},
1
2
3
Out[483]=