WOLFRAM NOTEBOOK

Asymptotic expansion for a linear first-order ordinary difference equation (OΔE) with an irregular singular point at infinity:
In[475]:=
s=AsymptoticRSolveValue[y[n+1]3ny[n],y[n],{n,,4}]
Out[475]=
n
3
1-
571
2488320
4
n
-
139
51840
3
n
+
1
288
2
n
+
1
12n
-
1
2
+n
n
1
Plot the solution using a logarithmic scale:
In[478]:=
DiscretePlotCallouts/.{
1
1},
TraditionalForm[
]
,{n,2^Range[1,9]},ScalingFunctions{"Log","Log"},
Out[478]=
Plot the solution of an asymptotic expansion for a linear third-order OΔE with an irregular singular point:
In[479]:=
s=AsymptoticRSolveValue[y[n+3]-y[n]-(n+2)y[n+1]0,y[n],{n,,1}]
Out[479]=
n
(-)
1-
13
12n
-
3
2
-n
n
1
+
-n/2
1+
5
12n
-
1
n
n/2
n
2
+
n
(-1)
-n/2
1+
5
12n
+
1
n
n/2
n
3
In[483]:=
DiscretePlotCalloutN[s/.{
1
1,
2
1,
3
1},5],
TraditionalForm[
]
,{n,2^Range[9]},ScalingFunctions{"Log","Log"},
Out[483]=
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.